Modules/ComputerManagementDsc.Common/ComputerManagementDsc.Common.psm1
<#
.SYNOPSIS Retrieves the localized string data based on the machine's culture. Falls back to en-US strings if the machine's culture is not supported. .PARAMETER ResourceName The name of the resource as it appears before '.strings.psd1' of the localized string file. For example: For WindowsOptionalFeature: DSC_WindowsOptionalFeature For Service: DSC_ServiceResource For Registry: DSC_RegistryResource For Helper: SqlServerDscHelper .PARAMETER ScriptRoot Optional. The root path where to expect to find the culture folder. This is only needed for localization in helper modules. This should not normally be used for resources. .PARAMETER Postfix Optional. The default string to postfix to the resource name to generate the name of the localized file. .NOTES To be able to use localization in the helper function, this function must be first in the file, before Get-LocalizedData is used by itself to load localized data for this helper module (see directly after this function). #> function Get-LocalizedData { [CmdletBinding()] param ( [Parameter(Mandatory = $true)] [ValidateNotNullOrEmpty()] [System.String] $ResourceName, [Parameter()] [ValidateNotNullOrEmpty()] [System.String] $ScriptRoot, [Parameter()] [ValidateNotNullOrEmpty()] [System.String] $Postfix = 'strings' ) if (-not $ScriptRoot) { $dscResourcesFolder = Join-Path -Path (Split-Path -Path (Split-Path -Path $PSScriptRoot -Parent) -Parent) -ChildPath 'DSCResources' $resourceDirectory = Join-Path -Path $dscResourcesFolder -ChildPath $ResourceName } else { $resourceDirectory = $ScriptRoot } $localizedStringFileLocation = Join-Path -Path $resourceDirectory -ChildPath $PSUICulture if (-not (Test-Path -Path $localizedStringFileLocation)) { # Fallback to en-US $localizedStringFileLocation = Join-Path -Path $resourceDirectory -ChildPath 'en-US' } Import-LocalizedData ` -BindingVariable 'localizedData' ` -FileName "$ResourceName.$Postfix.psd1" ` -BaseDirectory $localizedStringFileLocation return $localizedData } <# .SYNOPSIS Tests if the current machine is a Nano server. #> function Test-IsNanoServer { if (Test-Command -Name Get-ComputerInfo -Module 'Microsoft.PowerShell.Management') { $computerInfo = Get-ComputerInfo if ('Server' -eq $computerInfo.OsProductType ` -and 'NanoServer' -eq $computerInfo.OsServerLevel) { return $true } } return $false } <# .SYNOPSIS Creates and throws an invalid argument exception .PARAMETER Message The message explaining why this error is being thrown .PARAMETER ArgumentName The name of the invalid argument that is causing this error to be thrown #> function New-InvalidArgumentException { [CmdletBinding()] param ( [Parameter(Mandatory = $true)] [ValidateNotNullOrEmpty()] [String] $Message, [Parameter(Mandatory = $true)] [ValidateNotNullOrEmpty()] [String] $ArgumentName ) $argumentException = New-Object -TypeName 'ArgumentException' -ArgumentList @( $Message, $ArgumentName ) $newObjectParams = @{ TypeName = 'System.Management.Automation.ErrorRecord' ArgumentList = @( $argumentException, $ArgumentName, 'InvalidArgument', $null ) } $errorRecord = New-Object @newObjectParams throw $errorRecord } <# .SYNOPSIS Creates and throws an invalid operation exception .PARAMETER Message The message explaining why this error is being thrown .PARAMETER ErrorRecord The error record containing the exception that is causing this terminating error #> function New-InvalidOperationException { [CmdletBinding()] param ( [Parameter()] [ValidateNotNullOrEmpty()] [String] $Message, [Parameter()] [ValidateNotNull()] [System.Management.Automation.ErrorRecord] $ErrorRecord ) if ($null -eq $ErrorRecord) { $invalidOperationException = New-Object -TypeName 'InvalidOperationException' -ArgumentList @( $Message ) } else { $invalidOperationException = New-Object -TypeName 'InvalidOperationException' -ArgumentList @( $Message, $ErrorRecord.Exception ) } $newObjectParams = @{ TypeName = 'System.Management.Automation.ErrorRecord' ArgumentList = @( $invalidOperationException.ToString(), 'MachineStateIncorrect', 'InvalidOperation', $null ) } $errorRecordToThrow = New-Object @newObjectParams throw $errorRecordToThrow } <# .SYNOPSIS Removes common parameters from a hashtable .DESCRIPTION This function serves the purpose of removing common parameters and option common parameters from a parameter hashtable .PARAMETER Hashtable The parameter hashtable that should be pruned #> function Remove-CommonParameter { [OutputType([System.Collections.Hashtable])] [CmdletBinding()] param ( [Parameter(Mandatory = $true)] [System.Collections.Hashtable] $Hashtable ) $inputClone = $Hashtable.Clone() $commonParameters = [System.Management.Automation.PSCmdlet]::CommonParameters $commonParameters += [System.Management.Automation.PSCmdlet]::OptionalCommonParameters $Hashtable.Keys | Where-Object -FilterScript { $_ -in $commonParameters } | ForEach-Object -Process { $inputClone.Remove($_) } return $inputClone } <# .SYNOPSIS Tests the status of DSC resource parameters. .DESCRIPTION This function tests the parameter status of DSC resource parameters against the current values present on the system. .PARAMETER CurrentValues A hashtable with the current values on the system, obtained by e.g. Get-TargetResource. .PARAMETER DesiredValues The hashtable of desired values. .PARAMETER ValuesToCheck The values to check if not all values should be checked. .PARAMETER TurnOffTypeChecking Indicates that the type of the parameter should not be checked. .PARAMETER ReverseCheck Indicates that a reverse check should be done. The current and desired state are swapped for another test. .PARAMETER SortArrayValues If the sorting of array values does not matter, values are sorted internally before doing the comparison. #> function Test-DscParameterState { [CmdletBinding()] param ( [Parameter(Mandatory = $true)] [System.Object] $CurrentValues, [Parameter(Mandatory = $true)] [System.Object] $DesiredValues, [Parameter()] [System.String[]] $ValuesToCheck, [Parameter()] [switch] $TurnOffTypeChecking, [Parameter()] [switch] $ReverseCheck, [Parameter()] [switch] $SortArrayValues ) $returnValue = $true if ($CurrentValues -is [Microsoft.Management.Infrastructure.CimInstance] -or $CurrentValues -is [Microsoft.Management.Infrastructure.CimInstance[]]) { $CurrentValues = ConvertTo-HashTable -CimInstance $CurrentValues } if ($DesiredValues -is [Microsoft.Management.Infrastructure.CimInstance] -or $DesiredValues -is [Microsoft.Management.Infrastructure.CimInstance[]]) { $DesiredValues = ConvertTo-HashTable -CimInstance $DesiredValues } $types = 'System.Management.Automation.PSBoundParametersDictionary', 'System.Collections.Hashtable', 'Microsoft.Management.Infrastructure.CimInstance' if ($DesiredValues.GetType().FullName -notin $types) { New-InvalidArgumentException ` -Message ($script:localizedData.InvalidDesiredValuesError -f $DesiredValues.GetType().FullName) ` -ArgumentName 'DesiredValues' } if ($CurrentValues.GetType().FullName -notin $types) { New-InvalidArgumentException ` -Message ($script:localizedData.InvalidCurrentValuesError -f $CurrentValues.GetType().FullName) ` -ArgumentName 'CurrentValues' } if ($DesiredValues -is [Microsoft.Management.Infrastructure.CimInstance] -and -not $ValuesToCheck) { New-InvalidArgumentException ` -Message $script:localizedData.InvalidValuesToCheckError ` -ArgumentName 'ValuesToCheck' } $desiredValuesClean = Remove-CommonParameter -Hashtable $DesiredValues if (-not $ValuesToCheck) { $keyList = $desiredValuesClean.Keys } else { $keyList = $ValuesToCheck } foreach ($key in $keyList) { $desiredValue = $desiredValuesClean.$key $currentValue = $CurrentValues.$key if ($desiredValue -is [Microsoft.Management.Infrastructure.CimInstance] -or $desiredValue -is [Microsoft.Management.Infrastructure.CimInstance[]]) { $desiredValue = ConvertTo-HashTable -CimInstance $desiredValue } if ($currentValue -is [Microsoft.Management.Infrastructure.CimInstance] -or $currentValue -is [Microsoft.Management.Infrastructure.CimInstance[]]) { $currentValue = ConvertTo-HashTable -CimInstance $currentValue } if ($null -ne $desiredValue) { $desiredType = $desiredValue.GetType() } else { $desiredType = @{ Name = 'Unknown' } } if ($null -ne $currentValue) { $currentType = $currentValue.GetType() } else { $currentType = @{ Name = 'Unknown' } } if ($currentType.Name -ne 'Unknown' -and $desiredType.Name -eq 'PSCredential') { # This is a credential object. Compare only the user name if ($currentType.Name -eq 'PSCredential' -and $currentValue.UserName -eq $desiredValue.UserName) { Write-Verbose -Message ($script:localizedData.MatchPsCredentialUsernameMessage -f $currentValue.UserName, $desiredValue.UserName) continue } else { Write-Verbose -Message ($script:localizedData.NoMatchPsCredentialUsernameMessage -f $currentValue.UserName, $desiredValue.UserName) $returnValue = $false } # Assume the string is our username when the matching desired value is actually a credential if ($currentType.Name -eq 'string' -and $currentValue -eq $desiredValue.UserName) { Write-Verbose -Message ($script:localizedData.MatchPsCredentialUsernameMessage -f $currentValue, $desiredValue.UserName) continue } else { Write-Verbose -Message ($script:localizedData.NoMatchPsCredentialUsernameMessage -f $currentValue, $desiredValue.UserName) $returnValue = $false } } if (-not $TurnOffTypeChecking) { if (($desiredType.Name -ne 'Unknown' -and $currentType.Name -ne 'Unknown') -and $desiredType.FullName -ne $currentType.FullName) { Write-Verbose -Message ($script:localizedData.NoMatchTypeMismatchMessage -f $key, $currentType.FullName, $desiredType.FullName) $returnValue = $false continue } } if ($currentValue -eq $desiredValue -and -not $desiredType.IsArray) { Write-Verbose -Message ($script:localizedData.MatchValueMessage -f $desiredType.FullName, $key, $currentValue, $desiredValue) continue } if ($desiredValuesClean.GetType().Name -in 'HashTable', 'PSBoundParametersDictionary') { $checkDesiredValue = $desiredValuesClean.ContainsKey($key) } else { $checkDesiredValue = Test-DscObjectHasProperty -Object $desiredValuesClean -PropertyName $key } if (-not $checkDesiredValue) { Write-Verbose -Message ($script:localizedData.MatchValueMessage -f $desiredType.FullName, $key, $currentValue, $desiredValue) continue } if ($desiredType.IsArray) { Write-Verbose -Message ($script:localizedData.TestDscParameterCompareMessage -f $key, $desiredType.FullName) if (-not $currentValue -and -not $desiredValue) { Write-Verbose -Message ($script:localizedData.MatchValueMessage -f $desiredType.FullName, $key, 'empty array', 'empty array') continue } elseif (-not $currentValue) { Write-Verbose -Message ($script:localizedData.NoMatchValueMessage -f $desiredType.FullName, $key, $currentValue, $desiredValue) $returnValue = $false continue } elseif ($currentValue.Count -ne $desiredValue.Count) { Write-Verbose -Message ($script:localizedData.NoMatchValueDifferentCountMessage -f $desiredType.FullName, $key, $currentValue.Count, $desiredValue.Count) $returnValue = $false continue } else { $desiredArrayValues = $desiredValue $currentArrayValues = $currentValue if ($SortArrayValues) { $desiredArrayValues = $desiredArrayValues | Sort-Object $currentArrayValues = $currentArrayValues | Sort-Object } for ($i = 0; $i -lt $desiredArrayValues.Count; $i++) { if ($null -ne $desiredArrayValues[$i]) { $desiredType = $desiredArrayValues[$i].GetType() } else { $desiredType = @{ Name = 'Unknown' } } if ($null -ne $currentArrayValues[$i]) { $currentType = $currentArrayValues[$i].GetType() } else { $currentType = @{ Name = 'Unknown' } } if (-not $TurnOffTypeChecking) { if (($desiredType.Name -ne 'Unknown' -and $currentType.Name -ne 'Unknown') -and $desiredType.FullName -ne $currentType.FullName) { Write-Verbose -Message ($script:localizedData.NoMatchElementTypeMismatchMessage -f $key, $i, $currentType.FullName, $desiredType.FullName) $returnValue = $false continue } } if ($desiredArrayValues[$i] -ne $currentArrayValues[$i]) { Write-Verbose -Message ($script:localizedData.NoMatchElementValueMismatchMessage -f $i, $desiredType.FullName, $key, $currentArrayValues[$i], $desiredArrayValues[$i]) $returnValue = $false continue } else { Write-Verbose -Message ($script:localizedData.MatchElementValueMessage -f $i, $desiredType.FullName, $key, $currentArrayValues[$i], $desiredArrayValues[$i]) continue } } } } elseif ($desiredType -eq [System.Collections.Hashtable] -and $currentType -eq [System.Collections.Hashtable]) { $param = $PSBoundParameters $param.CurrentValues = $currentValue $param.DesiredValues = $desiredValue $null = $param.Remove('ValuesToCheck') if ($returnValue) { $returnValue = Test-DscParameterState @param } else { Test-DscParameterState @param | Out-Null } continue } else { if ($desiredValue -ne $currentValue) { Write-Verbose -Message ($script:localizedData.NoMatchValueMessage -f $desiredType.FullName, $key, $currentValue, $desiredValue) $returnValue = $false } } } if ($ReverseCheck) { Write-Verbose -Message $script:localizedData.StartingReverseCheck $reverseCheckParameters = $PSBoundParameters $reverseCheckParameters.CurrentValues = $DesiredValues $reverseCheckParameters.DesiredValues = $CurrentValues $null = $reverseCheckParameters.Remove('ReverseCheck') if ($returnValue) { $returnValue = Test-DscParameterState @reverseCheckParameters } else { $null = Test-DscParameterState @reverseCheckParameters } } Write-Verbose -Message ($script:localizedData.TestDscParameterResultMessage -f $returnValue) return $returnValue } <# .SYNOPSIS Tests of an object has a property .PARAMETER Object The object to test .PARAMETER PropertyName The property name #> function Test-DscObjectHasProperty { [CmdletBinding()] [OutputType([System.Boolean])] param ( [Parameter(Mandatory = $true)] [System.Object] $Object, [Parameter(Mandatory = $true)] [System.String] $PropertyName ) if ($Object.PSObject.Properties.Name -contains $PropertyName) { return [System.Boolean] $Object.$PropertyName } return $false } <# .SYNOPSIS Converts a hashtable into a CimInstance array. .DESCRIPTION This function is used to convert a hashtable into MSFT_KeyValuePair objects. These are stored as an CimInstance array. DSC cannot handle hashtables but CimInstances arrays storing MSFT_KeyValuePair. .PARAMETER Hashtable A hashtable with the values to convert. .OUTPUTS An object array with CimInstance objects. #> function ConvertTo-CimInstance { [CmdletBinding()] [OutputType([System.Object[]])] param ( [Parameter(Mandatory = $true, ValueFromPipeline = $true)] [System.Collections.Hashtable] $Hashtable ) process { foreach ($item in $Hashtable.GetEnumerator()) { New-CimInstance -ClassName MSFT_KeyValuePair -Namespace root/microsoft/Windows/DesiredStateConfiguration -Property @{ Key = $item.Key Value = if ($item.Value -is [array]) { $item.Value -join ',' } else { $item.Value } } -ClientOnly } } } <# .SYNOPSIS Converts CimInstances into a hashtable. .DESCRIPTION This function is used to convert a CimInstance array containing MSFT_KeyValuePair objects into a hashtable. .PARAMETER CimInstance An array of CimInstances or a single CimInstance object to convert. .OUTPUTS Hashtable #> function ConvertTo-HashTable { [CmdletBinding()] [OutputType([System.Collections.Hashtable])] param ( [Parameter(Mandatory = $true, ValueFromPipeline = $true)] [AllowEmptyCollection()] [Microsoft.Management.Infrastructure.CimInstance[]] $CimInstance ) begin { $result = @{ } } process { foreach ($ci in $CimInstance) { $result.Add($ci.Key, $ci.Value) } } end { $result } } <# .SYNOPSIS This function tests if a cmdlet exists. .PARAMETER Name The name of the cmdlet to check for. .PARAMETER Module The module containing the command. #> function Test-Command { [CmdletBinding()] [OutputType([System.Boolean])] param ( [Parameter(Mandatory = $true)] [System.String] $Name, [Parameter(Mandatory = $true)] [System.String] $Module ) return ($null -ne (Get-Command @PSBoundParameters -ErrorAction SilentlyContinue)) } # function Test-Command <# .SYNOPSIS Get the of the current time zone Id. .NOTES This function is also used by ScheduledTask integration tests. #> function Get-TimeZoneId { [CmdletBinding()] param ( ) if (Test-Command -Name 'Get-TimeZone' -Module 'Microsoft.PowerShell.Management') { Write-Verbose -Message ($script:localizedData.GettingTimeZoneMessage -f 'Cmdlets') $timeZone = (Get-TimeZone).StandardName } else { Write-Verbose -Message ($script:localizedData.GettingTimeZoneMessage -f 'CIM') $timeZone = (Get-CimInstance ` -ClassName Win32_TimeZone ` -Namespace root\cimv2).StandardName } Write-Verbose -Message ($script:localizedData.CurrentTimeZoneMessage -f $timeZone) $timeZoneInfo = [System.TimeZoneInfo]::GetSystemTimeZones() | Where-Object -Property StandardName -EQ $timeZone return $timeZoneInfo.Id } # function Get-TimeZoneId <# .SYNOPSIS Compare a time zone Id with the current time zone Id. .PARAMETER TimeZoneId The Id of the time zone to compare with the current time zone. .NOTES This function is also used by ScheduledTask integration tests. #> function Test-TimeZoneId { [CmdletBinding()] param ( [Parameter(Mandatory = $true)] [System.String] $TimeZoneId ) # Test if the expected value is the same as the current value. $currentTimeZoneId = Get-TimeZoneId return $TimeZoneId -eq $currentTimeZoneId } # function Test-TimeZoneId <# .SYNOPSIS Sets the current time zone using a time zone Id. .PARAMETER TimeZoneId The Id of the time zone to set. .NOTES This function is also used by ScheduledTask integration tests. #> function Set-TimeZoneId { [CmdletBinding()] param ( [Parameter(Mandatory = $true)] [System.String] $TimeZoneId ) if (Test-Command -Name 'Set-TimeZone' -Module 'Microsoft.PowerShell.Management') { Set-TimeZone -Id $TimeZoneId } else { if (Test-Command -Name 'Add-Type' -Module 'Microsoft.Powershell.Utility') { # We can use reflection to modify the time zone. Write-Verbose -Message ($script:localizedData.SettingTimeZoneMessage -f $TimeZoneId, '.NET') Set-TimeZoneUsingDotNet -TimeZoneId $TimeZoneId } else { # For anything else use TZUTIL.EXE. Write-Verbose -Message ($script:localizedData.SettingTimeZoneMessage -f $TimeZoneId, 'TZUTIL.EXE') try { & tzutil.exe @('/s', $TimeZoneId) } catch { Write-Verbose -Message $_.Exception.Message } # try } # if } # if Write-Verbose -Message ($script:localizedData.TimeZoneUpdatedMessage -f $TimeZoneId) } # function Set-TimeZoneId <# .SYNOPSIS This function sets the time zone on the machine using .NET reflection. It exists so that the ::Set method can be mocked by Pester. .PARAMETER TimeZoneId The Id of the time zone to set using .NET. .NOTES This function is also used by ScheduledTask integration tests. #> function Set-TimeZoneUsingDotNet { [CmdletBinding()] param ( [Parameter(Mandatory = $true)] [System.String] $TimeZoneId ) # Add the [TimeZoneHelper.TimeZone] type if it is not defined. if (-not ([System.Management.Automation.PSTypeName] 'TimeZoneHelper.TimeZone').Type) { Write-Verbose -Message ($script:localizedData.AddingSetTimeZoneDotNetTypeMessage) $setTimeZoneCs = Get-Content ` -Path (Join-Path -Path $PSScriptRoot -ChildPath 'SetTimeZone.cs') ` -Raw Add-Type ` -Language CSharp ` -TypeDefinition $setTimeZoneCs } # if [Microsoft.PowerShell.TimeZone.TimeZone]::Set($TimeZoneId) } # function Set-TimeZoneUsingDotNet <# .SYNOPSIS This function gets a specific power plan or all available power plans. The function returns one or more hashtable(s) containing the friendly name and GUID of the power plan(s). .PARAMETER PowerPlan Friendly name or GUID of a power plan to get. When not specified the function will return all available power plans. .NOTES This function is used by the PowerPlan resource. #> function Get-PowerPlan { [CmdletBinding()] [OutputType([System.Collections.Hashtable[]])] param ( [Parameter()] [ValidateNotNullOrEmpty()] [System.String] $PowerPlan ) $ErrorActionPreference = 'Stop' # Get all available power plan(s) as a hashtable with friendly name and GUID $allAvailablePowerPlans = Get-PowerPlanUsingPInvoke # If a specific power plan is specified filter for it otherwise return all if ($PSBoundParameters.ContainsKey('PowerPlan')) { $selectedPowerPlan = $allAvailablePowerPlans | Where-Object -FilterScript { ($_.FriendlyName -eq $PowerPlan) -or ($_.Guid -eq $PowerPlan) } return $selectedPowerPlan } else { return $allAvailablePowerPlans } } <# .SYNOPSIS This function gets the friendly name of a power plan specified by its GUID. .PARAMETER PowerPlanGuid The GUID of a power plan. .NOTES This function uses Platform Invoke (P/Invoke) mechanism to call native Windows APIs because the Win32_PowerPlan WMI class has issues on some platforms or is unavailable at all. e.g Server 2012 R2 core or Nano Server. This function is used by the Get-PowerPlan function. #> function Get-PowerPlanFriendlyName { [CmdletBinding()] [OutputType([System.String])] param ( [Parameter(Mandatory = $true)] [ValidateNotNullOrEmpty()] [System.Guid] $PowerPlanGuid ) $ErrorActionPreference = 'Stop' # Define C# signature of PowerReadFriendlyName function $MethodDefinition = @' [DllImport("powrprof.dll", CharSet = CharSet.Unicode)] public static extern uint PowerReadFriendlyName( IntPtr RootPowerKey, Guid SchemeGuid, IntPtr SubGroupOfPowerSettingGuid, IntPtr PowerSettingGuid, IntPtr Buffer, ref uint BufferSize ); '@ # Create Win32PowerReadFriendlyName object with the static method PowerReadFriendlyName. $powerprof = Add-Type ` -MemberDefinition $MethodDefinition ` -Name 'Win32PowerReadFriendlyName' ` -Namespace 'Win32Functions' ` -PassThru # Define variable for buffer size which whe have frist to figure out. $bufferSize = 0 $returnCode = 0 try { <# Frist get needed buffer size by calling PowerReadFriendlyName with NULL value for 'Buffer' parameter to get the required buffer size. #> $returnCode = $powerprof::PowerReadFriendlyName( [System.IntPtr]::Zero, $PowerPlanGuid, [System.IntPtr]::Zero, [System.IntPtr]::Zero, [System.IntPtr]::Zero, [ref]$bufferSize) if ($returnCode -eq 0) { try { # Now lets allocate the needed buffer size $ptrName = [System.Runtime.InteropServices.Marshal]::AllocHGlobal([System.Int32]$bufferSize) <# Get the actual friendly name of the powerlan by calling PowerReadFriendlyName again. This time with the correct buffer size for the 'Buffer' parameter. #> $returnCode = $powerprof::PowerReadFriendlyName( [System.IntPtr]::Zero, $PowerPlanGuid, [System.IntPtr]::Zero, [System.IntPtr]::Zero, $ptrName, [ref]$bufferSize) if ($returnCode -eq 0) { # Create a managed String object form the unmanged memory block. $friendlyName = [System.Runtime.InteropServices.Marshal]::PtrToStringUni($ptrName) return $friendlyName } else { throw [ComponentModel.Win32Exception]::new([System.Int32]$returnCode) } } finally { # Make sure allocated memory is freed up again. [System.Runtime.InteropServices.Marshal]::FreeHGlobal($ptrName) } } else { throw [ComponentModel.Win32Exception]::new([System.Int32]$returnCode) } } catch { New-InvalidOperationException ` -Message ($script:localizedData.UnableToGetPowerSchemeFriendlyName -f $PowerPlanGuid, $_.Exception.NativeErrorCode, $_.Exception.Message) } } <# .SYNOPSIS This function gets the GUID of the currently active power plan. .NOTES This function uses Platform Invoke (P/Invoke) mechanism to call native Windows APIs because the Win32_PowerPlan WMI class has issues on some platforms or is unavailable at all. e.g Server 2012 R2 core or Nano Server. This function is used by the PowerPlan resource. #> function Get-ActivePowerPlan { [CmdletBinding()] [OutputType([System.Guid])] param ( ) $ErrorActionPreference = 'Stop' # Define C# signature of PowerGetActiveScheme function $powerGetActiveSchemeDefinition = @' [DllImport("powrprof.dll", CharSet = CharSet.Unicode)] public static extern uint PowerGetActiveScheme(IntPtr UserRootPowerKey, ref IntPtr ActivePolicyGuid); '@ $returnCode = 0 # Create Win32PowerGetActiveScheme object with the static method PowerGetActiveScheme $powrprof = Add-Type ` -MemberDefinition $powerGetActiveSchemeDefinition ` -Name 'Win32PowerGetActiveScheme' ` -Namespace 'Win32Functions' ` -PassThru try { # Get the GUID of the active power scheme $activeSchemeGuid = [System.IntPtr]::Zero $returnCode = $powrprof::PowerGetActiveScheme([System.IntPtr]::Zero, [ref]$activeSchemeGuid) # Check for non 0 return codes / errors form the native function if ($returnCode -ne 0) { # Create a Win32Exception object out of the return code $win32Exception = ([ComponentModel.Win32Exception]::new([System.Int32]$returnCode)) New-InvalidOperationException ` -Message ($script:localizedData.FailedToGetActivePowerScheme -f $win32Exception.NativeErrorCode, $win32Exception.Message) } # Create a managed Guid object form the unmanged memory block and return it return [System.Runtime.InteropServices.Marshal]::PtrToStructure($activeSchemeGuid, [System.Type][System.Guid]) } finally { # Make sure allocated memory is freed up again. [System.Runtime.InteropServices.Marshal]::FreeHGlobal($activeSchemeGuid) } } <# .SYNOPSIS This function enumerates all available power plans/schemes. The function returns one or more hashtable(s) containing the friendly name and GUID of the power plan(s). .NOTES This function uses Platform Invoke (P/Invoke) mechanism to call native Windows APIs because the Win32_PowerPlan WMI class has issues on some platforms or is unavailable at all. e.g Server 2012 R2 core or Nano Server. This function is used by the PowerPlan resource. #> function Get-PowerPlanUsingPInvoke { [CmdletBinding()] [OutputType([System.Collections.Hashtable[]])] param ( ) $ErrorActionPreference = 'Stop' Write-Verbose -Message ($script:localizedData.EnumeratingPowerPlans) # Define C# signature of PowerEnumerate function $powerEnumerateDefinition = @' [DllImport("powrprof.dll", CharSet = CharSet.Unicode)] public static extern uint PowerEnumerate( IntPtr RootPowerKey, IntPtr SchemeGuid, IntPtr SubGroupOfPowerSetting, int AccessFlags, uint Index, IntPtr rBuffer, ref uint BufferSize ); '@ # Create Win32PowerEnumerate object with the static method PowerEnumerate $powrprof = Add-Type ` -MemberDefinition $powerEnumerateDefinition ` -Name 'Win32PowerEnumerate' ` -Namespace 'Win32Functions' ` -PassThru $index = 0 $returnCode = 0 $allAvailablePowerPlans = [System.Collections.ArrayList]::new() # PowerEnumerate returns the GUID of the powerplan(s). Guid = 16 Bytes. $bufferSize = 16 <# The PowerEnumerate function returns only one guid at a time. So we have to loop here until error code 259 (no more data) is returned to get all power plan GUIDs. #> while ($returnCode -ne 259) { try { # Allocate buffer $readBuffer = [System.Runtime.InteropServices.Marshal]::AllocHGlobal([System.Int32]$bufferSize) # Get Guid of the power plan using the native PowerEnumerate function $returnCode = $powrprof::PowerEnumerate([System.IntPtr]::Zero, [System.IntPtr]::Zero, [System.IntPtr]::Zero, 16, $index, $readBuffer, [ref]$bufferSize) # Return Code 259 means no more data so we stop here. if ($returnCode -eq 259) { break } # Check for non 0 return codes / errors form the native function. if ($returnCode -ne 0) { # Create a Win32Exception object out of the return code $win32Exception = ([ComponentModel.Win32Exception]::new([System.Int32]$returnCode)) New-InvalidOperationException ` -Message ($script:localizedData.UnableToEnumeratingPowerSchemes -f $win32Exception.NativeErrorCode, $win32Exception.Message) } # Create a managed Guid object form the unmanaged memory block $planGuid = [System.Runtime.InteropServices.Marshal]::PtrToStructure($readBuffer, [System.Type][System.Guid]) Write-Verbose -Message ($script:localizedData.PowerPlanFound -f $planGuid) # Now get the friendly name of to the power plan $planFriendlyName = Get-PowerPlanFriendlyName -PowerPlanGuid $planGuid Write-Verbose -Message ($script:localizedData.PowerPlanFriendlyNameFound -f $planFriendlyName) $null = $allAvailablePowerPlans.Add( @{ FriendlyName = $planFriendlyName Guid = $planGuid } ) $index++ } finally { # Free up memory [System.Runtime.InteropServices.Marshal]::FreeHGlobal($readBuffer) } } Write-Verbose -Message ($script:localizedData.AllPowerPlansFound) return $allAvailablePowerPlans } <# .SYNOPSIS This function activates a specific power plan (specified by its GUID). .PARAMETER Guid GUID of a power plan to activate. .NOTES This function uses Platform Invoke (P/Invoke) mechanism to call native Windows APIs because the Win32_PowerPlan WMI class has on some platforms issues or is unavailable at all. e.g Server 2012 R2 core or Nano Server. This function is used by the Get-PowerPlan function respectively the PowerPlan resource. #> function Set-ActivePowerPlan { [CmdletBinding()] param ( [Parameter(Mandatory = $true)] [System.Guid] $PowerPlanGuid ) $ErrorActionPreference = 'Stop' # Define C# signature of PowerSetActiveScheme function $powerSetActiveSchemeDefinition = @' [DllImport("powrprof.dll", CharSet = CharSet.Auto)] public static extern uint PowerSetActiveScheme( IntPtr RootPowerKey, Guid SchemeGuid ); '@ # Create Win32PowerSetActiveScheme object with the static method PowerSetActiveScheme. $powrprof = Add-Type ` -MemberDefinition $powerSetActiveSchemeDefinition ` -Name 'Win32PowerSetActiveScheme' ` -Namespace 'Win32Functions' ` -PassThru try { # Set the active power scheme with the native function $returnCode = $powrprof::PowerSetActiveScheme([System.IntPtr]::Zero, $PowerPlanGuid) # Check for non 0 return codes / errors form the native function if ($returnCode -ne 0) { throw [ComponentModel.Win32Exception]::new([int]$returnCode) } } catch { New-InvalidOperationException ` -Message ($script:localizedData.FailedToSetActivePowerScheme -f $PowerPlanGuid, $_.Exception.NativeErrorCode, $_.Exception.Message) } } <# .SYNOPSIS Returns the value of the provided in the Name parameter, at the registry location provided in the Path parameter. .PARAMETER Path String containing the path in the registry to the property name. .PARAMETER PropertyName String containing the name of the property for which the value is returned. #> function Get-RegistryPropertyValue { [CmdletBinding()] [OutputType([System.String])] param ( [Parameter(Mandatory = $true)] [System.String] $Path, [Parameter(Mandatory = $true)] [System.String] $Name ) $getItemPropertyParameters = @{ Path = $Path Name = $Name } <# Using a try/catch block instead of 'SilentlyContinue' to be able to unit test a failing registry path. #> try { $getItemPropertyResult = (Get-ItemProperty @getItemPropertyParameters -ErrorAction Stop).$Name } catch { $getItemPropertyResult = $null } return $getItemPropertyResult } <# .SYNOPSIS Throws an error if there is a bound parameter that exists in both the mutually exclusive lists. .PARAMETER BoundParameterList The parameters that should be evaluated against the mutually exclusive lists MutuallyExclusiveList1 and MutuallyExclusiveList2. This parameter is normally set to the $PSBoundParameters variable. .PARAMETER MutuallyExclusiveList1 An array of parameter names that are not allowed to be bound at the same time and those in MutuallyExclusiveList2. .PARAMETER MutuallyExclusiveList2 An array of parameter names that are not allowed to be bound at the same time and those in MutuallyExclusiveList1. #> function Assert-BoundParameter { [CmdletBinding()] param ( [Parameter(Mandatory = $true)] [AllowEmptyCollection()] [System.Collections.Hashtable] $BoundParameterList, [Parameter(Mandatory = $true)] [System.String[]] $MutuallyExclusiveList1, [Parameter(Mandatory = $true)] [System.String[]] $MutuallyExclusiveList2 ) $itemFoundFromList1 = $BoundParameterList.Keys.Where({ $_ -in $MutuallyExclusiveList1 }) $itemFoundFromList2 = $BoundParameterList.Keys.Where({ $_ -in $MutuallyExclusiveList2 }) if ($itemFoundFromList1.Count -gt 0 -and $itemFoundFromList2.Count -gt 0) { $errorMessage = ` $script:localizedData.ParameterUsageWrong ` -f ($MutuallyExclusiveList1 -join "','"), ($MutuallyExclusiveList2 -join "','") New-InvalidArgumentException -ArgumentName 'Parameters' -Message $errorMessage } } # Import Localization Strings $script:localizedData = Get-LocalizedData ` -ResourceName 'ComputerManagementDsc.Common' ` -ScriptRoot $PSScriptRoot Export-ModuleMember -Function @( 'Test-DscParameterState' 'Test-DscObjectHasProperty' 'Test-Command' 'Get-TimeZoneId' 'Test-TimeZoneId' 'Set-TimeZoneId' 'Set-TimeZoneUsingDotNet' 'Get-PowerPlan' 'Get-ActivePowerPlan' 'Set-ActivePowerPlan' 'Test-IsNanoServer' 'New-InvalidArgumentException' 'New-InvalidOperationException' 'Get-LocalizedData' 'Get-RegistryPropertyValue' 'Assert-BoundParameter' ) |